Mon, Aug 02, 2021:On Demand
Background/Question/Methods
Nutrient addition experiments indicate that nitrogen and phosphorus limit plant processes in many tropical forests. However, the long-term consequences for forest structure and species composition remain unexplored. We are positioned to evaluate potential long-term consequences of nutrient addition in central Panama where we have maintained a factorial nitrogen-phosphorus-potassium fertilization experiment for 21 years and an independent study quantified the species-specific nutrient requirements of 550 local tree species. Here, we ask whether nutrients limit reproduction at the species and community levels. We also ask whether species-specific reproductive responses to nutrient addition are stronger among species associated with naturally fertile soils, which could contribute to a shift in species composition. We quantified species-level reproductive responses for 38 focal species in the 21st year of the experiment and community-level reproductive litter production for the first 20 years.
Results/Conclusions Species-level reproductive responses to nitrogen and potassium addition were weak, inconsistent across species, and insignificant across the 38 focal species. In contrast, species-level responses to phosphorus addition were consistently and significantly positive across the 38 focal species but were unrelated to species-specific phosphorus requirements documented independently for the same species. Community-level reproductive litter production was unaffected by nutrient addition possibly because spatial and temporal variation is large. We conclude that phosphorus limits reproduction by trees in our experiment but find no evidence that reproductive responses to phosphorus addition favor species associated with naturally phosphorus-rich soils.
Results/Conclusions Species-level reproductive responses to nitrogen and potassium addition were weak, inconsistent across species, and insignificant across the 38 focal species. In contrast, species-level responses to phosphorus addition were consistently and significantly positive across the 38 focal species but were unrelated to species-specific phosphorus requirements documented independently for the same species. Community-level reproductive litter production was unaffected by nutrient addition possibly because spatial and temporal variation is large. We conclude that phosphorus limits reproduction by trees in our experiment but find no evidence that reproductive responses to phosphorus addition favor species associated with naturally phosphorus-rich soils.