Wednesday, August 6, 2008: 1:30 PM-5:00 PM
104 A, Midwest Airlines Center
Co-organizer:
Cheryl J. Briggs
Moderator:
Cheryl J. Briggs
Ecological theory has traditionally centered on long-term dynamics. Most classical theory on population regulation, coexistence of competitors, or persistence of consumer-resource systems taught in introductory ecology courses concentrates on finding stable asymptotic solutions: stable equilibria, limit cycles, or more complex dynamics (e.g., chaos). Yet most experiments and monitoring programs observe only short-term dynamics, contributing to a gap between theoretical and empirical work. Furthermore, if the pattern of environmental variation changes frequently enough, long-term dynamics may never be observed. For these reasons, theoretical ecologists are increasingly concerned with transient dynamics. In his 2007 Robert H. MacArthur Award Lecture, Alan Hastings highlighted the importance of developing theory that focuses on intermediate time scales. In this symposium, we will follow up on his thesis, and discuss a number of situations in which explicit consideration of transient dynamics can “change views of what regulates populations and produces coexistence on ecologically relevant time scales." Contributions will include presentation of new mathematical tools to examine transient dynamics and discussion of examples of the importance of transient dynamics in predator-prey, pathogen-host, competitive, and spatially extended systems. Realizing the importance of transient dynamics has clear implications for ecological education, because much of the theory taught in ecology courses concentrates only on equilibrium conditions. Speakers will therefore relate their work to the overall theme of the 2008 meeting, “Enhancing Ecological Thought by linking Research and Education”, by addressing whether their results should alter how ecological theory is presented in the classroom. The symposium will start with an overview by Alan Hastings on the importance of studying transient dynamics. This will be followed by a set of talks providing specific examples illustrating the importance of transients in consumer-resource interactions in streams and rivers, planktonic food webs, and epidemiology. The final set of talks will discuss new mathematical approaches for studying transient dynamics, which will help to inform future studies of transient dynamics.
Endorsement:
ESA Theory Section